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The interest in studying gene-environment interaction is increasing for complex diseases. However, most
methods of detecting gene-environment interactions may not be appropriate for the study of interactions
involving rare genes (G) or uncommon environmental exposures (E), because of poor statistical power. To
increase this power, the authors propose the counter-matching design. This design increases the number of
subjects with the rare factor without increasing the number of measurements that must be performed. In this
paper, the efficiency and feasibility (required sample sizes) of counter-matching designs are evaluated and
discussed. Counter-matching on both G and E appears to be the most efficient design for detecting gene-
environment interaction. The sensitivity and specificity of the surrogate measures, the frequencies of G and E,
and, to a lesser extent, the value of the interaction effect are the most important parameters for determining
efficiency. Feasibility is also more dependent on the exposure frequencies and the interaction effect than on the
main effects of G and E. Although the efficiency of counter-matching is greatest when the risk factors are very
rare, the study of such rare factors is not realistic unless one is interested in very strong interaction effects.
Nevertheless, counter-matching appears to be more appropriate than most traditional epidemiologic methods
for the study of interactions involving rare factors. Am J Epidemiol 2001;153:265–74.
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The interest in studying gene-environment interaction is
increasing for most chronic and complex diseases, mostly
because of considerable advances in molecular genetic tech-
niques. However, investigation of interactions requires sam-
ple sizes much larger than those needed to investigate main
effects. Smith and Day (1) showed that detecting interac-
tions of the same magnitude as postulated main effects in
1:1 unmatched case-control studies always requires
increases in study size of at least a factor of 4 (and, in some
circumstances, considerably more). Methods of detecting
gene-environment interactions have been reviewed (2–4).
Most methods may not be appropriate for the study of inter-
actions involving rare genes or uncommon environmental
exposures, particularly for moderate values of the interac-
tion effect. Required sample sizes are often unattainable,
ranging from tens of thousands to hundreds of thousands (or
more) of study subjects.

To increase a study’s power to detect a gene-environment
interaction when one of the factors under study is rare, one
possible alternative is the counter-matching design. Counter-
matching was introduced by Langholz and Clayton (5) as a
method of sampling controls from a cohort, or more gener-
ally from an at-risk population, for nested case-control stud-
ies. One purpose of the design is to increase the numbers of
cases and controls with the rare factor of interest without pro-
hibitively increasing the number of measurements that must
be performed. The goal of counter-matching is to maximize
the number of discordant case-control pairs, from which
information comes in a matched case-control study. The effi-
ciency of this method in assessing main effects of uncommon
factors has already been evaluated. Counter-matching has
been shown to increase the efficiency of main effect estima-
tion by approximately 25 percent in comparison with classi-
cal random sampling (6). In recent work, Cologne and
Langholz found that counter-matching was advantageous in
assessing interaction between two factors for which data on
one were available for the entire cohort and data on the other
were to be obtained from the sample (J. B. Cologne,
Radiation Effects Research Foundation (Hiroshima, Japan)
and B. Langholz, University of Southern California (Los
Angeles, California), personal communication, 1999). The
design they explored is quite different from that considered
here, in that information on one of the exposures (used for
the counter-matching) is known for the entire cohort and
information on the other is collected in the sample.
Furthermore, Cologne and Langholz were interested only in
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the interaction effect of the exposures, not in the main
effects. Assessment of effects of gene-environment interac-
tion without knowledge about both the genetic and the envi-
ronmental main effects might be of little use for public health
or individual risk assessment. In this paper, we propose
counter-matching designs that allow for estimation of the
gene-environment interactive effect as well as both genetic
and environmental main effects. The efficiency and feasibil-
ity of this counter-matching design are evaluated and dis-
cussed for different interaction scenarios.

MATERIALS AND METHODS

Models for interaction between a gene and an 
environmental exposure

We used the following parameters for modeling an interac-
tion between a genetic factor (G) and an environmental expo-
sure (E). E and G are assumed to be dichotomous, with E �
1 indicating the exposed-to-E status and G � 1 indicating the
susceptible genotype; exposure, E, and genotype, G, are
assumed to occur independently. Let P(G) equal the fre-
quency of the susceptible genotype in the cohort/population at
risk and P(E) the frequency of the environmental factor in the
cohort/population at risk. RReg is the rate ratio (RR) for envi-
ronmental exposure and the genetic factor, with e � 1 denot-
ing exposure to E and e � 0 nonexposure to E, and with g �
1 denoting the presence of G and g � 0 the absence of G.
Thus, the rate ratio when e � 1 and g � 0 is RR10 and is
denoted RRE; the rate ratio when e � 0 and g � 1 is RR01 and
is denoted RRG; and the rate ratio when e � 1 and g � 1 is
RR11 and is denoted RREG.

The classical definition of interaction was used for this
analysis and is as follows. Gene-environment interaction
exists if the joint effect of the genetic factor and the envi-
ronmental exposure differs from the product of the risks for
the individual factors on a multiplicative scale (RRint �
RREG/(RRERRG)). An interaction effect of more than 1 indi-
cates a greater than multiplicative effect between E and G,
while an interaction effect less than 1 indicates a less than
multiplicative effect. An additive effect may also be con-
sidered when the joint effect of the genetic factor and the
environmental exposure differs from the sum of the back-
ground disease rate and the excess rates for the environ-
mental exposure and the genetic factor (RRint � RREG/
(RRE � RRG – 1)). However, this exercise focuses on the
multiplicative model, the model most commonly used in
chronic disease epidemiology.

Counter-matching for gene-environment interaction

The design and analysis of counter-matched studies are
presented in detail elsewhere (6–8) and thus are only briefly
described below. In counter-matching, controls are selected
to increase the variation in factors of interest in a case-
control set relative to random sampling. The goal is thus the
opposite of that of matching, where one selects factors for
controls that are similar to the cases’ factors. A partial like-
lihood method has been developed for estimating different
exposure effects in counter-matching (9) using weighting

that takes into account the probabilities that subjects were
selected from specific strata.

In general, the number of case-control subjects from each
factor-of-interest status group is fixed by the design. Here,
three different variants of counter-matching for assessment of
gene-environment interaction are proposed. In order to make
assessment of main effects possible, we suppose that surro-
gates for G and E are available for the entire cohort/population
at risk in which the case-control study is nested. Thus,
counter-matching is performed either on the genetic factor or
on the environmental factor, or on both the genetic and the
environmental factors. Each case’s risk set would be stratified
by either a surrogate of G or a surrogate of E, or by surrogates
of both G and E, and controls for that risk set would be
selected from the strata other than the case’s stratum.

We compared the following population-based designs to
evaluate the efficiency of counter-matching in a study exam-
ining gene-environment interaction: 1) a full cohort study
with no matching and with infinite numbers of controls for
each case; 2) a standard nested case-control study with three
controls per case; 3) a 2-2 case-control design with counter-
matching on a surrogate of E; 4) a 2-2 case-control design
with counter-matching on a surrogate of G; and 5) a 1-1-1-
1 case-control design with counter-matching on surrogates
of both E and G.

The third and fourth designs have two individuals
exposed and two unexposed for either the G surrogate (Gsur)
or the E surrogate (Esur), respectively. For example, if a case
is exposed for a given surrogate, then one exposed control
and two unexposed controls for the given surrogate are
drawn. If a case is unexposed for a given surrogate, then one
unexposed control and two exposed controls for the given
surrogate are drawn. Design 5 includes one individual who
is unexposed for both surrogates, one who is exposed for
both surrogates, one who is exposed for Esur and unexposed
for Gsur, and one who is exposed for Gsur and unexposed for
Esur. Thus, for designs 2–5, each sampled risk set includes
one case and three controls, with controls sampled accord-
ing to Esur or/and Gsur status, depending on the design.

Calculating asymptotic relative efficiency

To evaluate efficiency, we calculate the asymptotic rela-
tive efficiency (ARE). For assessment of gene-environment
interaction, ARE is defined as the ratio of the gene-environ-
ment interaction variance for each counter-matched case-
control design to the variance for either the classical 1:3
nested case-control study or the full cohort. The ratio indi-
cates proportionally how many more (or fewer) observa-
tions (in large samples) are needed by the counter-matched
design to achieve the same precision as the reference design
(10). Asymptotic variances are calculated as described by
Langholz and Borgan (9), using a FORTRAN program
developed by Langholz (11).

Calculations of sample size

To calculate sample sizes for a gene-environment interac-
tion study using counter-matching, we use the following
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classical formulation as described by Breslow and Day (12):

where RRint is the gene-environment interaction effect and n
is the number of sets. The asymptotic variance of log (RRint)
under the null hypothesis (σ2

intH0
) is calculated with RRint

set to 1. The asymptotic variance of log (RRint) under the
alternative hypothesis (σ2

intH1
) is calculated with RRint set to

the alternative value. The numbers of counter-matching sets
required to detect a given RRint interaction value are calcu-
lated for 80 percent and 90 percent power (1 – β) using a
two-sided test at the 5 percent (α) level.

RESULTS

Efficiency of counter-matching

Efficiency of counter-matching according to study
design. Table 1 presents the AREs for different values of
the main effect of E (RRE � 1, 2), G (RRG � 2, 3), and
gene-environment (G × E) interaction (RRint � 2, 5, 10).
The RRs are rate ratios for E (RRE), G (RRG), and the G ×
E interaction term (RRint). The sensitivity and specificity of
the G and E surrogates are both fixed at 0.8. Counter-
matching on both G and E appears to be the most efficient
of the four case-control designs, whatever the main and
interactive effect values (table 1) and whatever the frequen-
cies of E and G (data not shown). For example, when 
RRE � 2, RRG � 3, and RRint � 5, ARE � 1.44 when
counter-matching on E, ARE � 1.81 when counter-
matching on G, and ARE � 2.31 when counter-matching on
both E and G, relative to the standard 1:3 nested case-
control study. In addition, when counter-matching is per-
formed on only one surrogate, counter-matching on the rarer
factor (e.g., G in table 1) appears to be more efficient (table
1; data not shown).

Counter-matching on both G and E also appears to be the
most efficient design for simultaneous detection of main
effects. Indeed, although the most efficient design for detect-
ing a given main effect is a design with counter-matching on
only the main effect of interest, counter-matching on both G
and E remains the most efficient when one is interested in
detecting the main effects of both G and E. For example, if one
is interested in detecting the main effect of G in a situation
where RRE � 2, RRG � 2, and RRint � 2, then ARE � 0.89
when counter-matching on E, 1.21 when counter-matching on
G, and 1.14 when counter-matching on both E and G, relative
to the standard 1:3 nested case-control study. Similarly, when
one wants to detect the main effect of E, ARE � 1.20 when
counter-matching on E, 0.86 when counter-matching on G,
and 1.10 when counter-matching on both E and G (table 1).

Since counter-matching on both G and E appears to be
the most efficient case-control design in the detection of
gene-environment interaction, we use this design to exam-
ine the efficiency when parameters such as frequencies of
G and E, main effects of G and E, or G × E interaction
effects are varied.

n �
1zασintH0

� z1�βσintH1
22

1log RRint2
2 ,

Efficiency of counter-matching according to the sensitivity
and specificity of surrogates. Figure 1 shows the effects of
the sensitivity (proportion of truly exposed (to either E or G)
subjects who are so identified by the surrogate (Esur or Gsur,
respectively)) and specificity (proportion of truly nonexposed
subjects who are so identified by the nonexposed surrogate)
of Gsur on ARE for different frequencies of G (P(G) � 0.01,
0.1, 0.2). The AREs are calculated comparing the design that
counter-matches on both G and E with the standard 1:3 case-
control study. All other parameters are fixed with RRE �
RRG � RRint � 2 and P(E) � 0.1, and the sensitivity and
specificity of E are fixed at 0.8. AREs increase as the sensi-
tivity of Gsur increases (specificity of Gsur fixed at 0.8 (figure
1, lines with circles)) or as the specificity of Gsur increases
(sensitivity of Gsur fixed at 0.8 (figure 1, lines with asterisks))
for different frequencies of G. In this scenario, the counter-
matched design is more efficient than or at least as efficient as
the 1:3 case-control study regardless of the specificity, and it
becomes more efficient than the 1:3 case-control study when
the sensitivity of G is greater than 0.1. Actually, the threshold
of specificity and sensitivity of G for obtaining a gain in effi-
ciency depends mainly on the fixed values of the sensitivity
and specificity of E and vice versa (data not shown). For
example, when the sensitivity and specificity of E are equal to
0.5, the threshold (ARE � 1) for the sensitivity of G is equal
to 0.3 and the specificity of G is equal to 0.5. In other words,
if one of the two surrogates has low sensitivity and specificity,
the other factor must be highly sensitive and specific to pro-
duce a gain in efficiency for a gene-environment interaction
study. This gain increases as the specificity or sensitivity
increases. Thus, high sensitivity and specificity for the surro-
gates of G and E are important for making counter-matching
on G and E an efficient study design.

Since family history may often be an easily, inexpen-
sively, and efficiently measured surrogate for many genetic
factors of interest, we undertook some calculations to deter-
mine values that might reasonably be expected for the sen-
sitivity and specificity of family history as a surrogate for
genotype. We performed calculations for a single gene
under a variety of assumptions about penetrance, domi-
nance, allele frequency, gene-environment interaction, and
within-family concordance in exposure. We computed
P(FH G1) for nuclear families with two siblings of the case
or the control (case/control) under the models described by
Witte et al. (13), where G1 denotes the genotype of the
case/control and FH (family history) is 1 if either parent or
either sibling is affected and 0 otherwise, averaging over the
joint distribution of exposures in the family and over the dis-
ease status of the case/control.

The results of these calculations are summarized in table
2. Over a wide range of genetic parameters, the specificities
P(FH � 0 G1 � aa) were consistently high, ranging from
approximately 68 percent to 84 percent. Under a recessive
model, the specificities for heterozygous (Aa) cases/controls
P(FH � 0 G1 � Aa) were also fairly high, generally about
65–75 percent. Sensitivities were more variable from one set
of model parameters to another, but they generally ranged
from 40 percent to 90 percent for homozygous (AA)
cases/controls. For heterozygous cases/controls, the sensi-

0

0

0
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tivities ranged from about 45 percent to 75 percent under a
dominant model.

In general, both the sensitivity and the specificity of sur-
rogate family history tended to be somewhat higher for rare
major susceptibility genes than for common low penetrance
genes, and were barely affected by the degree of environ-
mental concordance. Family history appears to be quite
appropriate as a surrogate for genotype in the counter-

matched design, with 80 percent sensitivity and specificity
being not unrealistic values for some genetic models.

Thus, we fixed sensitivity and specificity at 80 percent to
examine the efficiency when frequencies of G and E, main
effects of G and E, or G × E interaction effects are varied.

Efficiency of counter-matching according to the main
effects of G and E. In parts a and b of figure 2, we exam-
ine the AREs for different RRE and RRG values with sensi-

TABLE 1. Asymptotic relative efficiency (ARE) of three counter-matching designs for studying gene (G)-environment (E)     
interaction in comparison with either a standard nested case-control study design or a full cohort study design*

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 counter-matching on G
1-1-1-1 counter-matching on E and G

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 counter-matching on G
1-1-1-1 counter-matching on E and G

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 counter-matching on G
1-1-1-1 counter-matching on E and G

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 counter-matching on G
1-1-1-1 counter-matching on E and G

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 case-m on G
1-1-1-1 counter-matching on E and G

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 counter-matching on G
1-1-1-1 counter-matching on E and G

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 counter-matching on G
1-1-1-1 counter-matching on E and G

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 counter-matching on G
1-1-1-1 counter-matching on E and G

Full cohort study
1:3 nested case-control study
2-2 counter-matching on E
2-2 counter-matching on G
1-1-1-1 counter-matching on E and G

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

2
2
2
2
2

2
2
2
2
2

2
2
2
2
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2
2
2
2
2

2
2
2
2
2

2
2
2
2
2

* In this example, P (E ) = 0.1, P (G) = 0.01, and sensitivity and specificity are 80% for both the E surrogate and the G surrogate.
† RR, rate ratio.
‡ The expected variance from a study with n sets is the variance per set divided by n.
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457.5

169.8
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347.7
294.5

120.0
500.1
358.2
293.4
238.7

208.2
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455.4
391.7
338.4

125.9
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367.9
300.7
246.5

99.5
486.3
342.4
272.8
216.6
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521.9
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266.7

87.7
471.3
328.3
260.5
204.3

70.4
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314.6
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185.7

1.00
1.22
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1.00
1.33
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1.86

1.00
1.40
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2.10

1.00
1.29
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1.38
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1.42
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1.35
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2.31

1.00
1.47
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0.41
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0.42
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FIGURE 1. Effect of the sensitivity and specificity of a surrogate for
genetic exposure (G

sur
) on asymptotic relative efficiency (ARE) for

different values of the frequency of G (P(G) = 0.01, 0.1, 0.2), with
RR

E
= RR

G
= RR

int
= 2, P(E) = 0.1, and the sensitivity and specificity

of the surrogate for environmental exposure (E) fixed at 0.8. Lines
with circles denote the effect of the sensitivity of G

sur
on ARE; lines

with asterisks denote the effect of the specificity of G
sur

on ARE.
Key: . . . ., P(G) = 0.01; —, P(G) = 0.1; - - - -, P(G) = 0.2.

tivity and specificity set at 0.8 for both G and E, P(E) equal
to 0.2, and P(G) equal to 0.01. AREs are calculated for two
different values of G × E interaction (RRint � 3, 10). The
results show an increase in ARE as RRG increases. For
example, when RRint � 3 and RRE � 3 (figure 2, part a,

dashed line with asterisks), the AREs increase from 1.35
when RRG � 1 to 2.30 when RRG � 10. The slopes of the
AREs barely change across the range of RRint. For example,
when RRE � 3, comparison of AREs for RRG � 10 versus
RRG � 1 shows increases of 0.93 when RRint � 3 (part a,
dashed line), 0.95 when RRint � 5 (data not shown), and
0.96 when RRint � 10 (part b, dashed line).

Parts a and b of figure 2 also show a somewhat compli-
cated ARE pattern for given RRG’s and RRE’s. For example,
when RRint � 3, the ARE is highest for RRE � 3 and lowest
for RRE � 10. When RRint � 10, the AREs decrease as RRE
increases from 1 to 10. Parts c and d of figure 2 better illus-
trate this pattern. For example, when P(G) � 0.01, RRint �
3, and RRG � 3, the AREs increase from 1.68 when RRE �
1 to 1.76 when RRE � 2 and then decrease to 1.62 when
RRE � 10 (part c, line with diamonds). This decrease in
ARE for detecting a gene-environment interaction is a con-
sequence of the relative frequencies of the two factors under
study and is always observed as the main effect of the more
common factor increases (data not shown). That is, as the
absolute difference in frequency between G and E increases,
the AREs will generally decrease as the rate ratio of the
more common factor increases.

These results show that as the main effect of the rarer fac-
tor increases, AREs for detecting gene-environment interac-
tion increase. In contrast, as the main effect of the more com-
mon factor increases, AREs for detecting gene-environment
interaction may increase slightly but usually decrease. When
the frequencies of G and E are equal, AREs increase as the
main effect of either E or G increases (data not shown).

Efficiency of counter-matching according to the frequen-
cies of G and E. Figure 3 presents AREs from counter-
matching on both G and E for different frequencies of G and
E, with the sensitivity and specificity of both G and E fixed

TABLE 2. Calculation of the sensitivity and specificity of family history (FH) as a surrogate for a  
genetic exposure (RR

int
= RR

E
= 2, P(E) = 0.25)

Dominant

Recessive

Codominant

20
20

2
2

20
20

2
2

20
20

2
2

0.05
0.05
0.10
0.10

0.05
0.05
0.10
0.10

0.05
0.05
0.10
0.10

2
1
2
1

2
1
2
1

2
1
2
1

89.6
90.0
53.0
53.2

44.9
44.8
42.3
42.2

61.8
61.8
45.1
45.1

83.3
83.4
68.4
68.6

84.0
84.1
70.7
70.8

82.4
82.5
68.2
68.3

73.8
73.9
45.0
44.9

23.7
23.6
34.3
34.2

Gene
dominance

Allele
frequency

Sensitivity
(P (FH = 1
G1 = AA‡))

0RR
G
*

Disease
cumulative

risk

P (FH = 1
G1 = Aa)§

0
Exposure

concordance
(odds ratio†)

Specificity
(P(FH = 0
G1 = aa))

0

0.01
0.01
0.10
0.10

0.14
0.14
0.44
0.44

0.02
0.02
0.19
0.19

* RR
G
, rate ratio for the genetic factor (G ).

† Defined as [P
R
(E ) × (1 – P (E))]/[(1 – P

R
(E )) × P(E)], with P

R
(E) being the frequency of the environmental

exposure (E) among relatives.
‡ “A” represents the deleterious allele.
§ Under a dominant model, P (FH = 1 G1 = Aa) is also interpretable as sensitivity; under a recessive model,

P(FH = 1 G1 = Aa) is interpretable as (1 – specificity); under a codominant model, P(FH = 1 G1 = Aa) is
uninterpretable.

00
0
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FIGURE 2. Asymptotic relative efficiency (ARE) according to (a and b) RR
G

(main effect of G) and RR
E

(main effect of E) and according to (c
and d) RR

E
and P(G) for different gene (G)-environment (E) interaction values (RR

int
= 3, 10). In parts a and b, lines with circles denote the effect

of RR
G

on ARE for RR
E

= 1; dotted lines with asterisks denote the effect for RR
E

= 3; lines with squares denote the effect for RR
E

= 5; and plain
lines denote the effect for RR

E
= 10. In parts c and d, lines with circles denote the effect of RR

E
on ARE for P(G) = 0.001; lines with diamonds,

for P(G) = 0.01; lines with asterisks, for P(G) = 0.1; lines with squares, for P(G) = 0.2; and plain lines, for P(G) = 0.5.

at 0.8, RRE equal to 2, and RRG equal to 3. AREs are calcu-
lated for three different values of G × E interaction (RRint �
3, 5, 10). The results show a decrease in the ARE as the fre-
quency of G increases. For example, when RRint � 5 and
P(E) � 0.1 (figure 3, part b, line with diamonds), AREs
decrease from 2.40 when P(G) � 0.001 to 1.17 when P(G) �
0.5. At a given frequency of E, the slope of ARE increases
as RRint increases. For example, when P(E) � 0.1, compar-
ison of AREs for P(G) � 0.001 versus P(G) � 0.5 shows a
decrease in ARE of 1.04 when RRint � 3 (part a, line with
diamonds), 1.23 when RRint � 5 (part b, line with dia-
monds), and 1.44 when RRint � 10 (part c, line with dia-
monds).

Figure 3 also shows that at a given frequency of G, the
AREs decrease as the frequency of E increases. For exam-
ple, when RRint � 5 and P(G) � 0.05, the ARE decreases
from 2.59 when P(E) � 0.01 to 1.48 when P(E) � 0.3. In
addition, AREs increase as the frequency of G decreases
(see figure 1). These results show increases in AREs for

detecting gene-environment interaction when the frequen-
cies of the factors under study decrease. Thus, as G and E
become rarer, counter-matching on both G and E becomes
more efficient.

Efficiency of counter-matching according to the G × E
interaction value. The ARE of counter-matching on both G
and E is calculated according to different values of G × E
interaction for various frequencies of G (figure 4). As
before, the sensitivity and specificity of both G and E are
fixed at 0.8; RRE � 2, RRG � 3, and P(E) � 0.2. Figure 4
shows a slight increase in the ARE as RRint increases. The
increase becomes greater as the frequency of G becomes
smaller. For example, when P(G) � 0.01 (figure 4, line with
circles), AREs increase from 1.50 when RRint � 1 to 1.98
when RRint � 20. The slopes of the AREs increase as the
frequency of G decreases. For example, comparing RRint �
1 with RRint � 20 produces an increase in ARE of 0.09 when
P(G) � 0.3, an increase of 0.26 when P(G) � 0.1, and an
increase of 0.52 when P(G) � 0.001. These results show
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FIGURE 3. Asymptotic relative efficiency (ARE) according to the
frequencies of G (P(G)) and E (P(E)) for different gene (G)-
environment (E) interaction values (RR

int
= 3, 5, 10), with RR

E
= 2

and RR
G

= 3. Lines with circles denote the effect of P(G) on ARE for
P(E) = 0.01; lines with diamonds, for P(E) = 0.1; lines with asterisks,
for P(E) = 0.2; and lines with squares, for P(E) = 0.3.

FIGURE 4. Asymptotic relative efficiency (ARE) according to the
gene (G)-environment (E) interaction effect (RR

int
) for various fre-

quencies of G, with P(E) = 0.2, RR
E

= 2, and RR
G

= 3. Line with small
squares denotes the effect of RR

int
on ARE for P(G) = 0.001; line with

circles, for P(G) = 0.01; line with triangles, for P(G) = 0.05; line with
large squares, for P(G) = 0.1; line with diamonds, for P(G) = 0.2; line
with asterisks, for P(G) = 0.3; and plain line, for P(G) = 0.5.

increases in AREs for detecting gene-environment interac-
tion as RRint increases. The greater the interaction effect, the
greater the efficiency of counter-matching on both G and E,

particularly when the frequency of G is small (P(G) < 0.1).
However, the AREs are much more strongly influenced by
P(G) than by RRint.

Feasibility of counter-matching

To evaluate the feasibility of counter-matching in the
assessment of gene-environment interaction, required sam-
ple sizes are calculated. The necessary number of counter-
matching sets is calculated using a study design that
counter-matches on surrogates of both G and E with sensi-
tivity and specificity set equal to 0.8. We present sample
sizes for two different values of power (80 percent and 90
percent) using a two-sided test at the 5 percent level for dif-
ferent frequencies of G and E and the G × E interaction
effect. Tables 3 and 4 show the number of counter-matching
sets required when RRE � RRG � 2 (table 3) and when 
RRE � 2 and RRG � 10 (table 4).

In table 3, because RRG � RRE, there is a symmetry in the
sample sizes. That is, the required sample sizes for (P(G) �
x, P(E) � y) are equal to the sample sizes for (P(G) � y,
P(E) � x). The change in RRG from 2 in table 3 to 10 in table
4 has a large effect on the required sample sizes when G or E
is rare (i.e., <0.1) and has little effect when G or E is common
(i.e., ≥0.1). For example, when P(E) � 0.1 and P(G) � 0.01,
the sample size required to detect an RRint of 3 (80 percent
power) is 2,738 counter-matched sets when RRG � 2 (table
3) and 1,207 sets when RRG � 10 (table 4). When P(E) �
0.1 and P(G) � 0.1, the sample size required to detect an
RRint of 3 (80 percent power) is 379 counter-matched sets
when RRG � 2 (table 3) and 308 sets when RRG � 10 (table
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4). The frequencies of G and E and RRint are the parameters
that have the largest effect on the sample sizes required to
detect gene-environment interaction. Sample sizes needed to
detect gene-environment interaction increase as the frequen-

cies of G and E decrease. In addition, sample sizes decrease
as the G × E interaction values increase.

When G and E are rare (e.g., ≤0.01) and gene-environ-
ment interaction is moderate (e.g., RRint ≤ 5), the required

TABLE 3. Numbers of matching sets (sample sizes) required to have 80% and 90% power to detect a gene-environment      
interaction, using a two-sided test at the 5% level, for different frequencies of G and E and different interaction effects (RR

int
)

when RR
E 
= RR

G
= 2*

0.01

0.1

0.2

0.3

503,984
189,164

83,287
38,645

69,366
26,439
11,841

5,593

47,619
18,344

8,304
3,964

42,749
16,590

7,564
3,634

645,452
237,277
102,318
46,550

89,718
33,688
14,877

6,942

62,051
23,640
10,595

5,016

56,011
21,552

9,754
4,659

52,166
19,620

8,659
4,029

7,170
2,738
1,230

584

4,919
1,899

863
415

4,413
1,717

787
382

66,891
24,659
10,669

4,874

9,284
3,495
1,549

727

6,416
2,452
1,104

528

5,790
2,235
1,018

493

7,170
2,738
1,230

584

976
379
174

86

666
262
123

63

596
237
113

59

9,284
3,495
1,549

727

1,276
491
224
111

877
344
161

83

790
314
150

80

P(E ) RR
int

P (G) = 0.1P(G ) = 0.001 P(G ) = 0.01 P (G) = 0.3

(1 – β) =
0.8

P (G ) = 0.2

2
3
5

10

2
3
5

10

2
3
5

10

2
3
5

10

* G, genetic exposure; E, environmental exposure; RR, rate ratio; RR
int

, rate ratio for interaction between G and E.

(1 – β) =
0.9

(1 – β) =
0.8

(1 – β) =
0.9

(1 – β) =
0.8

(1 – β) =
0.9

(1 – β) =
0.8

(1 – β) =
0.9

(1 – β) =
0.8

(1 – β) =
0.9

4,919
1,899

863
415

666
262
123
63

453
181
87
46

406
165
80
44

6,416
2,452
1,104

528

877
344
161

83

602
241
116

63

542
221
109

62

4,413
1,717

787
382

596
237
113

59

406
165

80
44

364
150

75
42

5,790
2,235
1,018

493

790
314
150

80

542
221
109

62

489
203
103

61

TABLE 4. Numbers of matching sets (sample sizes) required to have 80% and 90% power to detect a gene-environment      
interaction, using a two-sided test at the 5% level, for different frequencies of G and E and different interaction effects (RR

int
)

when RR
E 
= 2 and RR

G
= 10*

0.01

0.1

0.2

0.3

191,548
73,952
33,552
16,045

27,352
10,652

4,874
2,351

18,910
7,407
3,408
1,654

16,721
6,575
3,037
1,480

150,010
95,532
42,948
20,384

35,934
13,893

6,318
3,034

24,952
9,722
4,455
2,156

22,130
8,667
3,991
1,943

21,735
8,404
3,819
1,830

3,086
1,207

556
273

2,131
840
392
196

1,887
749
353
179

28,403
10,875

4,899
2,332

4,061
1,578

725
356

2,818
1,108

517
261

2,506
994
469
241

5,596
2,188
1,006

490

768
308
147

78

526
215
106

59

471
195

99
57

7,372
2,865
1,311

638

1,022
410
198
107

706
290
146

84

636
267
138

84

P(E ) RR
int

P (G) = 0.1P(G ) = 0.001 P(G ) = 0.01 P (G) = 0.3

(1 – β) =
0.8

P (G ) = 0.2

2
3
5

10

2
3
5

10

2
3
5

10

2
3
5

10

* G, genetic exposure; E, environmental exposure; RR, rate ratio; RR
int

, rate ratio for interaction between G and E.

(1 – β) =
0.9

(1 – β) =
0.8

(1 – β) =
0.9

(1 – β) =
0.8

(1 – β) =
0.9

(1 – β) =
0.8

(1 – β) =
0.9

(1 – β) =
0.8

(1 – β) =
0.9

5,797
2,284
1,059

521

787
319
156
85

538
224
113
66

485
206
107
64

7,678
3,014
1,395

689

1,053
430
213
120

728
306
159

96

661
285
153

97

6,969
2,759
1,286

637

943
386
191
106

646
272
139

82

586
251
132

81

9,263
3,660
1,706

849

1,269
523
263
151

879
375
198
123

803
351
191
124
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sample size is very large (>8,000 sets), often reaching unre-
alistic numbers of sets. When the frequency of G is very low
(P(G) � 0.001), as might be observed for major genes such
as BRCA1/BRCA2 or CDKN2A, the needed sample size is
only realistic when E is common (P(E) ≥ 0.2) and there is a
strong gene-environment interaction effect: RRint > 5 when
RRG � 2 and RRint ≥ 5 when RRG � 10.

DISCUSSION

Counter-matching on both G and E in studies formulated
to detect gene-environment interaction appears to be the
most efficient of the four case-control designs considered.
The parameters that are the most important for determining
efficiency are the sensitivity and specificity of the surro-
gates, the frequencies of the risk factors of interest (E and
G), and, to a lesser extent, the value of the interaction effect.
Feasibility, as measured by the required sample sizes, is also
more dependent on the risk factor frequencies and the inter-
action effect than on the main effects (particularly for com-
mon exposures).

Since the sensitivity and specificity of the surrogates are
very important for the gain in efficiency of counter-matching,
the choice of highly specific and sensitive surrogates in the
first stage of this method is critical. However, the requirement
for highly specific and sensitive surrogates must be balanced
against the need to use surrogates on which data are available
or are easily measured in the cohort/population at risk. For
example, at present, it would probably be too costly to geno-
type an entire cohort for a specific gene. As such, one might
consider using a family history of the disease under study as
a surrogate for the genetic factor. Family history is relatively
easily measured, and the information is not too expensive to
obtain. However, before designing the study, one must assess
how predictive family history of disease is for the particular
gene of interest. Indeed, we have shown that both the sensi-
tivity and the specificity of surrogate family history tend to be
higher for rare major susceptibility genes than for common
low penetrance genes. Thus, in many complex and chronic
diseases, family history may not be highly sensitive or spe-
cific for G if the disease under study is genetically hetero-
geneous (i.e., if more than one gene is involved, leading to
low sensitivity), if most gene carriers are not affected (i.e.,
there is low penetrance), or if family sizes are not sufficiently
large (the latter two conditions’ leading to low specificities).
In such scenarios, family history would be expected to be
only a weak surrogate of G and thus produce only a modest
or minimal gain in efficiency for the counter-matching
design. When genes of interest have low penetrance, physio-
logic G surrogates (such as inexpensive phenotypic assays of
urine, saliva, hair, etc.) may be considered and may be
expected to be more sensitive and specific than family history.

The results of this analysis show that as the main effect of
the rarer factor increases, the relative efficiency of counter-
matching on both G and E for detecting gene-environment
interaction increases. Conversely, as the main effect of the
more common factor increases, the relative efficiency usu-
ally decreases. Moreover, it has been shown that the larger
the gene-environment interaction and the rarer the risk fac-

tors G and E, the greater the efficiency of counter-matching.
However, the gain in efficiency must be balanced by the fea-
sibility of the study, as measured by the needed sample size.
Indeed, when the two factors are rare (i.e., frequency < 0.1)
and the interaction value is moderate (i.e., ≤5), the relative
efficiency of the counter-matching design is very high but
the corresponding required sample size is very large (i.e.,
>8,000 sets, >8,000 cases, and >24,000 controls). Even if
sample sizes for alternative designs would be even larger
than those needed for counter-matching, these sample sizes
are generally not realistic, and studies of this size tend to be
prohibitively expensive.

When the frequency of G is very small (e.g., 0.001), as
might be observed for major genes in cancer or other
chronic diseases, the needed sample size might remain real-
istic only when factor E is common (i.e., >0.2) and when the
interaction effect is high (i.e., >5).

For more common factors, the gain in efficiency derived
from use of the counter-matching design, which may be
minimal in some situations, must be balanced against the
complexity of the design, particularly the difficulty involved
in obtaining two specific and sensitive surrogates for the
risk factors of interest. At present, identification of good sur-
rogates for the factor(s) of interest and the costs associated
with measuring these surrogates in large numbers of sub-
jects (i.e., the entire cohort) may be the major determinants
in deciding whether or not to conduct a counter-matched
study.

This evaluation of the counter-matching design for
assessment of gene-environment interaction used unrelated
individuals drawn from a cohort or population at risk. The
potential problem of population stratification or genetic
admixture might affect the efficiency of this design in a
gene-environment interaction study, although the potential
loss of efficiency would be expected to be small (14). The
use of related individuals as controls from a family popula-
tion-based cohort may be an alternative. This design has
recently been proposed for counter-matching in assessment
of the effect of genetic factors and their interaction with
environmental exposures (15).

Another multistage design has been proposed for the
study of rare factors: the so-called “balanced design” (16).
In this study design, rather than choosing a subset at ran-
dom, one selects cases and controls in order to oversample
for the rare factor of interest. The oversampling is taken
into account in the analysis to obtain unbiased estimates of
the effects of the individual factors and their interaction.
One important difference between this design and counter-
matching is that the balanced design is for grouped data
(i.e., the case-control set must have multiple cases in each
set), while the counter-matching design we have used is
individually matched. In some situations, grouping may
offer some logistical advantages, while in others the ability
to match finely may be desirable. When the individual fac-
tor effects and their interaction are to be estimated, the bal-
anced design appears to be as complex to implement as the
counter-matching design. Cain and Breslow (17) investi-
gated the efficiency of a balanced design versus a random
sampling case-control design in estimating exposure-



274 Andrieu et al.

Am J Epidemiol Vol. 153, No. 3, 2001

covariate interaction. Similar to the counter-matching
design, the balanced design was always more efficient than
a random sampling design for estimating interaction.
Limited direct comparisons between the “balanced” and
“counter-matching” designs showed similar efficiencies in
interaction estimation (9, 18). Additional research on the
efficiency of the balanced design using different gene-
environment interaction schemes, such as those presented
in this paper, would facilitate better comparison of these
two complex study designs.

The development of designs for specific gene-environment
interaction studies should consider factors specific to each
particular study. For instance, the frequencies of the genetic
and environmental variables, their main effects, and the 
a priori supposed interaction effects would determine the
efficiency and feasibility of various study designs. In addi-
tion, the costs of contacting and enrolling cases and controls,
measuring surrogate variables, gene typing, measuring envi-
ronmental variables, and establishing a reliable administra-
tive structure with which to accurately implement a complex
study design (e.g., multistage selection and data collection)
should be assessed. In addition, if the specific genes of inter-
est are highly prevalent metabolic genes for which relatively
inexpensive phenotypic assays are available, one could con-
sider a design that would screen large numbers of potential
study subjects with a phenotypic assay and then genotype
only those subjects selected for counter-matching.
Alternatively, the rarity of the disease may suggest sampling
strategies that differ from designs which would be used if
the disease were common. If the disease is common, such
that many cases are available, a one-control-per-case
counter-matching design could be envisioned. Again, the
specifics of a particular study will determine what type(s) of
designs to consider. Whatever the design, the principle of
using surrogate measures to inform the sampling may be
considered in order to increase power for a gene-environ-
ment interaction study.

The increased interest in evaluating gene-environment
interaction for many chronic diseases and the requirement of
larger sample sizes for such studies have led to the evalua-
tion of epidemiologic study designs that differ from tradi-
tional case-control or cohort designs. Counter-matching is
one such alternative design. Although the efficiency of
counter-matching relative to a 1:3 case-control study is
greatest when the risk factors of interest are very rare, the
study of such very rare factors is not realistic unless one is
interested only in detecting very strong interaction effects
(e.g., RR

int
> 10). Nevertheless, a 1-1-1-1 counter-matching

design appears to be more appropriate than most traditional
epidemiologic methods for the study of gene-environment
interaction involving rare genes or uncommon environmen-
tal exposures. However, both efficiency and feasibility must
be evaluated before one considers using a counter-matching
design, since it is more complex than that of a standard
nested case-control study.
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